Brasofensine Sulfate

Prop INNM

Antiparkinsonian Dopamine Reuptake Inhibitor

BMS-204756 NS-2214

(E)-(1R,2R,3S,5S)-3-(3,4-Dichlorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carbaldehyde O-methyloxime sulfate (1:1) salt

C₁₆H₂₀Cl₂N₂O.H₂O₄S

Mol wt: 425.3308

CAS: 171655-92-8

CAS: 173830-14-3 [as maleate salt (1:1)]
CAS: 173830-20-1 (as monohydrochloride)
CAS: 173830-18-7 (as disulfate salt)
CAS: 173830-17-6 (as monofumarate salt)
CAS: 173830-15-4 [as citrate (1:1)]

CAS: 173655-91-7 (as free base)

EN: 224675

Synthesis

Synthesis of brasofensine: The hydrolysis of (1R,2R,3S,5S)-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid methyl ester (I) with refluxing 1M HCl gives the corresponding hydroxy acid (II), which is dehydrated with refluxing POCI₃ and treated with methanol to the unsaturated methyl ester (III). The reaction of (III) with 3,4-dichlorophenylmagnesium bromide in ether yields a mixture of (1R,2S,3S,5S)- and (1R,2R,3S,5S)-3-(3,4-dichlorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid methyl esters (V) and (VI), respectively. Enantiomer (V) is isomerized to (VI) by treating the mixture with sodium methoxide in refluxing methanol. The reduction of (VI) with LiAlH, in ethyl ether gives (1R,2R,3S,5S)-[3-(3,4-dichlorophenyl)-8-methyl-8-azabicyclo[3.2.1]octan-2-yl]methanol (VII), which is oxidized with oxalyl chloride in dichloromethane, affording aldehyde (VIII). Finally, this compound is treated with methoxyammonium chloride and Na2CO3 in methanol, giving brasofensine as an oil. Several salts of

brasofensine were obtained by addition of the acid to a solution of brasofensine in ethanol and recrystallization from either water or isopropanol (1). Scheme 1.

Synthesis of 8-[11C-methyl]-brasofensine: The demethylation of the previously described intermediate (VI) by means of 2,2,2-trichloroethyl chloroformate in refluxing toluene gives the expected ester (IX), which is protected with di-tert-butyl dicarbonate in THF, affording (1*R*,2*R*,3*S*,5*S*)-8-(*tert*-butoxycarbonyl)-3-(3,4-dichlorophenyl)-8-azabicyclo[3.2.1]octane-2-carboxylic methyl ester (X). The reduction of (X) with LiAIH, in ethyl ether gives (1R,2R,3S,5S)-8-(tert-butoxycarbonyl)-[3-(3,4-dichlorophenyl)-8-methyl-8-azabicyclo[3.2.1]octan-2-yl]methanol (XI), which is oxidized with oxalyl chloride in dichloromethane, affording the aldehyde (XII). The reaction of (XII) with methoxyammonium chloride and Na₂CO₃ in methanol gives the O-methyloxime (XIII), which is deprotected with trifluoroacetic acid in dichloromethane, yielding (1R,2R,3S,5S)-3-(3,4-dichlorophenyl)-8-azabicyclo[3.2.1]octane-2-carbadehyde O-methyloxime (XIV) (1). Finally, this compound is methylated with [11C]-methyl iodide in DMSO at 130 °C (2). Scheme 2.

Description

White crystals: sulfate, m.p. 161-3 °C; disulfate, m.p. 84-7 °C; maleate, m.p. 140-2 °C; citrate, m.p. 143-4 °C; malonate, m.p. 116-8 °C; fumarate, m.p. 158-9 °C; hydrochloride, m.p. 74-5 °C (1).

Introduction

The pharmacological treatment of Parkinson's disease has improved in recent years, thanks to a better understanding of how to use existing drugs as well as the introduction of newer agents. Current pharmacological treatment of Parkinson's disease is shown in Table I and

A. Graul, J. Castañer. Prous Science, P.O. Box 540, 08080 Barcelona, Spain.

Drugs Fut 1999, 24(2) 129

therapeutic approaches under investigation for the treatment of Parkinson's disease are presented in Table II.

During the last few years there has been a growing interest in the therapeutic possibilities of dopamine reuptake inhibition for the treatment of neurological and psychiatric disorders. Dopamine is known to be released into the synaptic cleft in order to stimulate postsynaptic dopaminergic receptors. The removal of dopamine occurs normally by a reuptake mechanism into presynaptic terminals. Inhibition of this uptake produces an enhancement of the physiological dopaminergic activity.

Cocaine has been described to have dopamine reuptake-inhibiting properties. Research efforts have focused on the design of cocaine analogs with selective dopamine reuptake-inhibiting properties and low toxicity/dependence liability. Thus, several attempts were made to synthesize cocaine analogs (3-13), but due to stimulant effects their potential as therapeutic agents was limited. More recently, a new class of cocaine congeners possessing 3-substituted aldoxime groups in the endo- α -configuration has been reported to include dopamine

reuptake inhibitors with a low toxicity/side effect profile. From this series, NS-2214 (brasofensine) was selected for further development (1, 2).

Pharmacological Actions

In vitro, brasofensine was shown to inhibit dopamine reuptake in striatal synaptosomes (IC $_{50}=0.003~\mu\text{M}$), as well as noradrenaline reuptake in hippocampal synaptosomes and serotonin reuptake in cortical synaptosomes (IC $_{50}=0.0013$ and 0.013 μM , respectively) (1). It was effective at low doses in mouse, rat and monkey models of parkinsonism, and appeared to be more effective than known dopamine reuptake inhibitors such as nomifensine, diclofensine and GBR-12909. Furthermore, the long duration of action of brasofensine (approx. 24 h) indicates the potential for once-daily dosing (14).

In vivo in a marmoset model of MPTP-induced parkinsonism, brasofensine at doses of 0.1-2.5 mg/kg p.o. caused a dose-dependent increase in locomotor activity 130 Brasofensine Sulfate

Table I: Pharmacological treatment of Parkinson's disease (from Prous Science Ensemble database).

	Manufacturer	Year of introduction
Dopamine precursors		
Levodopa	Roche	1969
Levodopa/carbidopa ¹	DuPont Pharm.	1972
Levodopa/benserazide1	Roche	1973
Droxidopa	Sumitomo	1989
MAO-B inhibitors		
Selegiline HCI	Orion; Asta Medica	1981
Zydis² selegiline HCl	Elan Pharma	1998
COMT inhibitors		
Tolcapone	Roche	1997 (withdrawn)
Entacapone	Orion	1998
Dopamine agonists		
Amantadine HCI	Novartis	1964
Apomorphine HCI	Britannia	_
Bromocriptine mesilate	Novartis	1975
Pergolide mesilate	Lilly	1989
Cabergoline	Pharmacia & Upjohn	1993
Pramipexole HCI	Boehringer Ingelheim	1997
Ropinirole HCI	SmithKline Beecham	1997
Anticholinergics ³		
Procyclidine HCI	Glaxo Wellcome	1951
Benztropine mesylate	Merck & Co.	1954
Biperiden HCI	Knoll	1954
Orphenadrine HCl	3M Pharm.; Yamanouchi	1955

¹Peripheral decarboxylase inhibitor. ²Instantly dissolving technology from R.P. Scherer. ³Used to relieve mild tremor but do not improve akinesia.

Drugs Fut 1999, 24(2)

Table II: Therapeutic approaches under investigation for the treatment of Parkinson's disease (from Prous Science Ensemble database).

Mechanism of action	Manufacturer	Status
Dopamine reuptake inhibitors		
Brasofensine (NS-2214)	NeuroSearch; Bristol-Myers Squibb	Phase II
Dopamine agonists		
TV-1203	Teva	Phase II
Dopamine D ₁ agonists		
ABT-431	Abbott	Phase II
7.5.1.01	CeNeS	Research
Dopamine D ₂ agonists		
BAM-1110 ¹	Nippon Shoji; Maruko; Tokyo Tanabe	Phase II
N-0923 transdermal patch	Discovery Therapeutics; Yoshitomi	Phase II
PNU-95666E	Pharmacia & Upjohn	Phase I
Nicotinic acetylcholine agonists		
SIB-1508Y	Sibia Neurosciences	Phase II
SIB-1765F	Sibia Neurosciences	Preclinical
	Sibia Nediosolenees	i rediinidai
MAO-B inhibitors Lazabemide HCI (Pakio) ²	Roche	NDA filed
Rasagiline mesylate (TVP-1012) ³	Teva	Phase III
SL-34.0026	Synthelabo	Phase I
	Gyntholabo	i nase i
Adenosine A _{2A} antagonists	Kuawa Hakka	Phase II
KW-6002 Sch-58261	Kyowa Hakko	Priase II Preclinical
	Schering-Plough	Freciinicai
Neuroprotective agents		B
Riluzole ⁵	Rhône-Poulenc Rorer	Phase III
OPC-14117 ⁶	Otsuka	Phase II
MIF ⁷	NIH	Preclinical
Neurotrophic agents ⁴		
NeuroCell-PD ⁸	Diacrin; Genzyme Tissue Repair	Phase II/III
Neurturin ⁹	Genentech	Preclinical
OP-1 ¹⁰	Creative BioMolecules	Preclinical
Neurophilin ligands		
NIL-A	Guilford; Amgen	Preclinical
	Vertex	Research
δ-Opioid agonists		
SNC-80 ¹¹	Glaxo Wellcome; NIH	Preclinical
5-HT _{2C} antagonists		
SB-205553 ¹²	SmithKline Beecham	Research
Gene therapy		
AAV-based therapy ¹³	Cell Genesys	Research
ProSavin ¹⁴	Oxford BioMedica	Preclinical
Cell therapy		
hRPE-GM ¹⁵	Theracell; Emory University	Preclinical
Spheramine ¹⁶	Titan	Preclinical
Stem cell-derived dopaminergic neurons	NeuralSTEM	Preclinical

¹Also dopamine D₁ agonist. ²Also under development for Alzheimer's disease (as Tempium). ³Also under development for Alzheimer's disease. ⁴See also MAO-B inhibitors and adenosine A_{2A} antagonists. ⁵Launched in 1995 for amyotrophic lateral sclerosis (as Rilutek). ⁶Also under development for AIDS-related dementia. ⁷Macrophage migration-inhibitory factor. ⁸Porcine neural cell product. ⁹Protein which is homologous to GDNF. ¹⁰Small-molecule neurotrophic agent. ¹¹A dopaminergic mechanism, mediated via dopamine D₁ receptors, is suggested to be involved. ¹²Suggested to be useful in reducing the dose of dopamine replacement therapy. ¹³Delivery of genes responsible for the production of levodopa using an adenovirus-associated viral gene delivery system. ¹⁴Genes are transferred to brain cells using LentiVector technology. ¹⁵Dopaminergic human retinal pigmented epithelial cells attached to gelatin microcarriers for intrastriatal transplantation. ¹⁶Microcarriers coated with dopamine-producing natural human cells.

132 Brasofensine Sulfate

and a dose-dependent decrease in disability scores (alertness, reaction to stimuli, checking movements, attention and eye movements, posture, balance/coordination and vocalization) (1).

In a similar model, common marmosets were treated for 5 days with MPTP (2.0 mg/kg s.c.) and then with L-dopa/carbidopa (12.5 + 12.5 mg/kg p.o. b.i.d.) until the appearance of dyskinesias. Several months thereafter, animals were administered L-dopa/carbidopa for 2 days followed by brasofensine (0.5 mg/kg p.o.) for 11 days. Title compound effectively reversed MPTP-induced akinesia in this model and, in contrast to L-dopa, brasofensine did not produce concomitant dyskinesia, stereotypy or hyperactivity. Brasofensine relieved akinesia more effectively than tremor, and animals treated with the compound suffered some weight loss (approx.10%) during the treatment period. These findings support the utility of brasofensine in the early treatment of Parkinson's disease (15).

Clinical Studies

Brasofensine has been evaluated in safety and tolerability studies in parkinsonian patients, with satisfactory results. Various clinical efficacy studies are currently underway: an international, multicenter efficacy study in 150 levodopa-naive patients, as well as combination therapy studies in levodopa-treated patients in stable phase or who are suffering fluctuations (dyskinesia or on-off phenomena). Phase II proof-of-principle studies are expected to be completed in early 1999 (16).

Source

NeuroSearch A/S (DK); licensed to Bristol-Myers Squibb Co. (US) for development and marketing world-wide except in Scandinavia and the Baltic countries (17).

References

- 1. Moldt, P., Wätjen, F., Scheel-Krüger, J. (NeuroSearch A/S). *Tropane-2-aldoxine derivatives as neurotransmiter reuptake inhibitors.* EP 756596, JP 97505607, US 5736556, WO 9528401.
- 2. Gee, A.D., Moldt, P., Gjedde, A. *The labelling of a novel tropane derivative* [^{r1}C]NS 2214 (BMS-204756) An inhibitor of the dopamine transporter. J Label Compd Radiopharm 1997, 39: 959-72.
- 3. Gatley, S.J., Yu, D.W., Fowler, J.S., MacGregor, R.R., Schlyer, D.J., Dewey, S.L., Wolf, A.P., Martin, T., Shea, C.E., Volkow, N.D. Studies with differentially labeled [11C]cocaine, [11C]norcocaine, [11C]benzoylecgonine, and [11C]- and 4'-[18F]fluorococaine to probe the extent to which [11C]cocaine metabolites contribute to PET images of the baboon brain. J Neurochem 1994, 62: 1154-62.
- 4. Muller, L., Halldin, C., Farde, L., Karlsson, P., Hall, H., Swahn, C.G., Neumeyer, J., Gao, Y., Milius, R. [^{11}C] β -CIT, a cocaine

- analogue. Preparation, autoradiography and preliminary PET investigations. Nucl Med Biol 1993, 20: 249-55.
- 5. Brownell, A.L., Elmaleh, D.R., Meltzer, P.C., Shoup, T.M., Brownell, G.L., Fischman, A.J., Madras, B.K. *Cocaine congeners as PET imaging probes for dopamine terminals.* J Nucl Med 1996, 37: 1186-92.
- 6. Wilson, A.A., DaSilva, J.N., Houle, S. *In vivo evaluation of* [¹¹C]- and [¹⁸F]-labelled cocaine analogues as potential dopamine transporter ligands for positron emission tomography. Nucl Med Biol 1996, 23: 141-6.
- 7. Hume, S.P., Luthra, S.K., Brown, D.J. et al. *Evaluation of* [¹¹C]RTI-121 as a selective radioligand for PET studies of the dopamine transporter. Nucl Med Biol 1996, 23: 377-84.
- 8. Lundkvist, C., Halldin, C., Swahn, C.G., Hall, H., Karlsson, P., Nakashima, Y., Wang, S., Milius, R.A., Neumeyer, J.L., Farde, L. [O-Methyl-¹¹C]β-CIT-FP, a potential radioligand for quantitation of the dopamine transporter: Preparation, autoradiography, metabolite studies, and positron emission tomography examinations. Nucl Med Biol 1995, 22: 905-13.
- 9. Ponchant, M., Varastet, M., Hantraye, P., Chicheportiche, R., Kamenka, J.M., Crouzel, C. *Synthesis of 3-[18F]fluoromethyl-BTCP and evaluation as a potential PET radioligand for the dopamine transporter in baboons.* Nucl Med Biol 1993, 20: 727-33
- 10. Fowler, J.S., Volkow, N.D., Wolf, A.P. et al. *Mapping cocaine binding sites in human and baboon brain in vivo.* Synapse 1989, 4: 371-7.
- 11. Dannals, R.F., Neumeyer, J.L., Milius, R.A., Ravert, H.T., Wilson, A.A., Wagner, H.N. Jr. Synthesis of a radiotracer for studying dopamine uptake sites in vivo using PET: 2beta-Carbomethoxy-3 β -4-(fluorophenyl)-[N-¹¹C-methyl]tropane ([¹¹C]CFT or [¹¹C]WIN-35,428). J Label Compd Radiopharm 1993, 33: 147-52.
- 12. Loc'h, C., Muller, L., Ottaviani, M., Halldin, C., Farde, L., Maziere, B. *Synthesis of 2β-carbomethoxy-3β-(4-[76Br]bromophenyl)tropane ([76Br]β-CBT), a PET tracer for in vivo imaging of the dopamine uptake sites.* J Label Compd Radiopharm 1995, 36: 385-92.
- 13. Halldin, C., Farde, L., Lundkvist, C., Ginovart, N., Nakashima, Y., Karlsson, P., Swahn, C.G. [¹¹C]β-CIT-FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography. Synapse 1996, 22: 386-90.
- 14. *Brasofensine Parkinson's disease*. NeuroSearch A/S Web Site http://www.neuroserch.dk/projects/develop.htm, Dec 9, 1998.
- 15. Pearce, R.K.B., Banerji, T., Scheel-Krüger, J., Jenner, P. *The dopamine reuptake blocker NS 2214 increases locomotor activity but does not produce dyskinesias in MPTP-treated common marmosets.* Br J Pharmacol 1995, 116(Suppl.): Abst 304P.
- 16. Brasofensine development status. NeuroSearch A/S Company Communication Dec 9, 1998.
- 17. NeuroSearch A/S today announced agreement with Bristol-Myers Squibb on development of brasofensine for the treatment of Parkinson's disease in Japan. NeuroSearch A/S Press Release Feb 6, 1998.